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ABSTRACT

A new class of tests that can be viewed as a generalization of Neyman's
optimal C(a) test is introduced. An optimally robust test which maximizes
the asymptotic power within this class, subject to a bounded influence
function, is selected. It is shown that it is equivalent to a certain
asymptotically minimax test proposed by Wang (1981). Finally, some numerical
results on the asymptotic behaviour of robust C(a)-type tests under several
errors' and carriers' distributions are discussed.
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1. INTRODUCTION

Let {(x1 ,y1 ) =1 ,..., n} be a sequence of independent identical

distributed random variables such that

T= e + e, =1 ,..., n , (1.1)

where y1  is the ith observation, x1 ]RP is the ith row (written as a

column vector) of the design matrix, e c eC- P a p-vector of unknown

parameters and eic] the ith error. Suppose that ei is independent of

x and is distributed according to a normal N(O,a2) . Moreover, denote

by K(x) the distribution of the x's with respect to some o-finite

measure U and by F,(x,y) the joint distribution of (x1 ,y1 ) .

In the classical parametric approach, there are several procedures

one can use for subhypothesis testing: the F-test, which is equivalent

to the likelihood ratio test, the Wald test and the C(a) test.

These tests are asymptotically equivalent and, when the errors are normally

distributed, they are optimal; see, for instance, Cox and Hinkley (1974).

However, these test procedures suffer similar robustness problems as the

least squares estimators. Although they are moderately robust with respect

to the level, they do lose power rapidly in the presence of small departures

from the normality assumption on the errors; cf. Hampel (1973, 1978), Schrader

and Hettmansperger (1980). Robust alternatives to the F-test and the Wald

test have been investigated recently by Schrader and McKean (1977), Schrader

and Hettmansperger (1980) and Ronchetti (1982a, 1982b, 1984).

• II II I
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In this paper we focus on the class of C(a) tests. In section 2

we define a new class of tests which generalizes the optimal C(a) tests

introduced by Neyman (1958, 1979). In section 3 we investigate their

robustness properties by means of the influence function and we compute

their asymptotic power. This allows us to select the optimally robust

C(a)-type test, that is a test which maximizes the asymptotic power

within this new class (efficiency condition), subject to a bounded

influence function of the test statistic (robustness requirement). In

section 4 we show the equivalence between our optimally robust C(a)-type

test and an asymptotically minimax test introduced by Wang (1981). This

points out the strong relation between the minimax approach and our

approach to robust testing. Finally, section 5 presents some numerical

results on the asymptotic behaviour of C(a)-type tests under several

distributions of the errors and of the carriers.
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2. C(a)-TYPE TESTS

Consider the regression model (1.1). Though C(c%) tests can be defined

for testing more than one linear hypothesis on e (see BUhler and Purl,

1966), we focus here on the generalization of Neyman's original definition

(see Neyman, 1958), that is we shall introduce a new class of procedures

for testing

HO : 8(p) = 0 (2.1)

where 6(j) denotes the jth component of the vector 8 . For a given

p-vector x , we denote by x(1) its "nuisance part", that is

x( 1 ) = (x(1),...,x(P-)) T and by X(2) its last component x(p)

Moreover, let x = (x l),o)T . We denote by M(11) , M(12) , M(21) -M(22)

the submatrices of a (p-1)xl partition of a pxp matrix M . Note

that M(22) is simply m pp, the (p,p) component of M.

The class of tests we shall define is based on a function

in : Rp x R -R , (x,r) , (x~r)

which satisfies the following conditions:

(2.ETA1) (1) (x,.-) is continuous and odd for all x Rp ,

(ii) n(xr) P0 for all x c R , r c e

(2.ETA2) n(x,') is differentiable on R\D(x;n) for all x C RP ,

where V(x;n) is a finite set.
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Let n'(x,r) := (3/a r)n(x,r) if xcd p , rcR\V (x;n)

:- 0 otherwise,

and assume:

SuPrln'(x.r)I < - for all x € P

We shall also assume the following regularity condition:

(2.ETA3) M := En'(x,r)xxT  exists and is nonsingular.

Definition 2.1 The class of C(a)-type tests for linear models is defined

by means of the test statistics

E1 i (2.2)
- §-1 n ,y xT - o . x(p) -U -13

n I E n(xi9(Yl-xie)/oY){x 1) ( 1 (xi)
pp 1 (21)'"11)(xi)(1)J

where n satisfies the conditions (2. ETA1), (2.ETA2) and U is the lower

triangular matrix with positive diagonal elements such that UUT = M . "Large"

values of Zn are significant.

Remark 1. C(a,) tests were introduced by Neyman (1958) for a general parametric

model and extended to the robust testing problem by Wang (1981, Remarks 2 and

3, p. 1100) who was able to derive an (asymptotically minimax) robust version

of the optimal C(G) test. We shall discuss the connections with this test

in section 4. If we put n(x,r) - -*'(r)/#(r) - r in (2.2), where f

is the standard normal density (the density of the error's distribution), Zn

becomes the test statistic of the optimal C(a) test obtained by Neyman (1958,

p. 228). In this sense the tests defined by (2.2) can be called C(a)-type tests.
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Remark 2. The test statistic Zn depends on the unknown nuisance parameters

e(1),...,e(p-1) and on the scale parameter a . In section 3 we shall

discuss the properties of a studentized version of Zn . From now on we

assume for simplicity a = I .

Remark 3. In order to determine asymptotic critical regions of the test,

we shall compute the asymptotic distribution of Zn in section 3.
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3. OPTIMALLY ROBUST C(q)-TYPE TESTS

In this section we investigate the robustness properties of C(a)-type

tests by means of the Influence function and we select the optimally robust

test in this class. This is a test that maximizes the asymptotic power within

the class of C(a)-type test, subject to a bounded influence function.

The notion of influence function for estimators was introduced by

Hampel (1968, 1974). It is essentially the first derivative of an estimator

viewed as functional, and describes the normalized influence of an Infinitesimal

observation on the estimator. Formally, suppose the estimator Tn can be

written as functional T of the empirical distribution function F n ) ,

Tn a T(F(n)) . Then the influence function of T at F is given by

IF(z;T,F) = lim .(T((1-c)F+e6 z) - T(F))/E , (3.1)

where 6z is the distribution that puts mass 1 at the point z . It is

then clear that, from a robustness point of view, boundedness is a desirable

property of IF.

The concept of influence function has been extended to tests by Rousseeuw

and the author, and independently by Lambert; see Ronchetti (1979, 1982a);

Rousseeuw and Ronchetti (1979, 1981); Hampel, Ronchetti, Rousseeuw, Stahel

(1984); Lambert (1981). It turns out that the influence function defined on

the test statistic is proportional to the influence of an infinitesimal observa-

tion on the level and on the power (or, as in Lamber (1981), on the P-value)

of the test. Therefore, a test statistic with a bounded influence function

guarantees robustness of validity and robustness of efficiency for the test.
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Let us now compute the influence function of our C(c)-type tests. Let Z

be the functional corresponding to the test statistic Zn , that is

Z(F) -$n(xy-xxTi).(U-lx)(P)dF(x,y)

Then Z(F(n )) = n' Zn , where F(n) is the empirical distribution function.

Proposition 3.1 Let Fi be the model distribution under the null hypothesis.

If (2.ETA1) and (2.ETA2) hold, the influence function of Z is given by

IF(xy;ZFi) a n(x,y-xT).(u-lx)(p) (3.2)

Proof. The result follows easily applying the definition (3.1) to Z and

noting that by (2.ETA1) (i) En(x,r)x = 0

From (3.2) we see that Neyman's optimal C(a) test (n(x,r) = r) , though

asymptotically efficient, has an unbounded influence function. Our goal will

be to compromise between efficiency and robustness within the class of

C(c)-type tests by finding a test that maximizes the asymptotic power, under

a bound on the influence function. Let us now compute the asymptotic power

of a C(a)-type test defined by n

Proposition 3.2 Besides (2.ETA1), (2.ETA2) and (2.ETA3) assume

(3.AS3) En2(xr).l x12 <
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where 1 denotes the Euclidean norm. Put X:= En2(x~r).l(U-lx)(p)12

Then, under the sequence of alternatives

HKn H e o +n-k (3-3)

where A - (DO ... 909A(p))T,

the test statistic Zn has asymptotically a normal distribution with mean

(p)(

u pp AM and variance X . Moreover, the asymptotic power of the

C(cx)-type test at the level a defined by Z n is given by

S!
bI

pp

where Is the cumulative standard normal.

Proof. It suffices to compute EZn under the sequence (3.3). Define:

where f,(X.y) f (y-x Te)*k(x) . Then, for j - 1.. .,p-1 , we have

1 - n(3.4)

+ fnX.YXT-)-(u'x)P).~a/ e~j) 0x,y)3idv(x)dy

whr 0• OpP)
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Using

(U-1 x) (p) u-1.( U-1 )x1,(p)) 35
= Upp (U( 21))  )x(1  P) , (3.5)

we get

En ' (x, rExT T * ,(P)fi(1)0"(-x (3.6)
u-1 (-U °U E 1 I' (x, r) x Exl xjr T x(p)
P (21) i) x( 1 )n) (xlr)x(1)x)

u1 .(-U T +1 T . -p (21) )U (11) * (11) + (12))

and the first term of the right hand side of (3.4) vanishes. In a similar

way one can prove that also the second term of the right hand side of (3.4)

equals 0. Moreover,

[(a/ae(P)e) sW]

fn(x,y-x Te)*(u-x) /e (p ) ) fe (x,y)] W (x)dy

En(x,r)•(U- x) ( P ) .- ex ( p )

and by integrating by parts,

EnI (x, r) • (-1x) (P) .(p)
(3.7)

S(2 1 ) U(,1 ) 'M(1 2 ) m~ u, (U -1 pp U .
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Finally, denoting by a dot the differentiation with respect to e , we obtain

( ( ))(i) - 0 , for j-l,...ep- (3.8)

(P) - pp (3.9)

and by (2.ETA1) (i)

(() = .0

Therefore, using a Taylor expansion we get

EeZ n n/ 2 () - / o(I(ID-) 1I)

-PPA(P) + on
- 1/ 2

This completes the proof.

Remark 1. The test defined by the test statistic Zn depends on the unknown

nuisance parameter 0 . By techniques similar to those used by Wang (1981)

one can show that the result of Proposition 3.2 holds if we substitute

by a suitable (n -consistent) estimate Tn (see Wang, 1981, p. 1099).

Moreover, the result of Proposition 3.1 still holds. To see this, suppose

that the influence function of T exists and define

Z(F) - Sn(xy-xT.T(F))'(u'lx)(P)dF(x,y)
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Then,

IF(x,y;Z,F-) - [(B/ac)Z((l-E)F + C6x )) (3.10)
6 6 (X y) Cin0

- n(xy-xTO)•(U-1x) (p ) +JSn(s,v-sT).(-1U.) (P)'(9,v)

-(fn'(sOv-s T)•(U-IS) (p ) -;dFW(sv)).IF(x,y;T 9F;)

Now the second term of the right hand side of (3.10) is equal 0 in view

of (3.5) and (2.ETA1) (1), and so is the third term by (3.6).

The next Proposition gives the optimally robust C(c)-type test.

Proposition 3.3 Under (2.ETA1), (2.ETA2), (2.ETA3), (3.AS3), the test which

maximizes the asymptotic power within the class of C(a)-type tests, subject

to a bounded Influence function, is defined by

fno(x,r) aIz(P)-l-lc(riz(P)I) =c/iz(P) (r)

where z = U 1x , U0  is the lower triangular matrix defined implicitly by

the matrix equation

E(20(c/Iz(P)l)-1)zzT- I

*€(t) - min(cmax(t,-c)) is the Huber *-function, and c is a given positive

constant depending on the bound on the influence function.
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According to Proposition 3.1 and 3.2 we have to maximize u 2/ subject
ppp

to a bound on the right hand side of (3.2). The same problem has been solved

in Ronchetti (1984; Theorem 4.3) in connection with the class of so-called

r-tests. Therefore we refer to that paper for the complete proof; cf. also

Ronchetti (1982a, Theorem 3).
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4. CONNECTION WITH AN ASYMPTOTICALLY MINIMAX TEST

In this section we describe the connections between the optimally robust

C(a)-type test and a test introduced by Wang (1981). Wang studies the testing

problem using minimax techniques. He considers the following situation.

Suppose we are given a parametric model {Fe:e c 0 C RP) and suppose

we want to test a hypothesis on one component of the parameter e , say

B(p ) = 0 , the other (p-i) components being nuisance parameters. Then,

using the technique of shrinking nelghbourhoods, Wang is able to derive an

asymptotically minimax test in the case, where the model distribution is

indexed by nuisance parameters. Let us write this result in the situation

of the linear model. Define:

r - y-x , a :- (a (1 )  a(p)T
d~~~xeea X()+T() +z# aJ Ja x 1 x x 1d(xa(])) -x ) +a (1)x(1) :-

A(a(1) ,.) - A*(x,y;a(1) ,A) :- red(x.a(])) . (4.1)

For a given c > 0 , 6 > 0 , define V0 (a( 1 ) , e ) and

implicitly by means of the equations

E[maxt(A(a( 0l ) - V1 (a~l ,g))101 - E/81 (4.2)

E [max{ (VO(a( 1 ) ,l ) - A(a(,) , )) , 01 + A(a() I - E/61 . (4.3)

Moreover, let a(l )  a (T) be the solution to the equation

E ([A(a( 1 ) ,)V]o(a( 1 ) ,) * r-x(])) -l 0 (4.4)

and define
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:-6 E(EA(a(1),e)3v o(C(1),9 ))2 (4.5)

Proposition 4.1 (Wang, 1981, p. 1099, p. 1104) The test defined by the

critical region

{yn(g) 0 0'(1-) + £VI(Cx( 1)(;).I)/v(0)} , (4.6)

where

Y yn(e) := n'Z.(v(B) " . [A*(xiY i  0- 0 V
1=1 .Y~1l()BJ0("(1)O)

is an asymptotically minimax test at level a

The test defined by (4.6) will be called Wang test. In order to have

a better performance at the model, Wang (1981, p. 1105) proposes a modification

of the test (4.6) and defines a test by means of the following critical region

(Y n M)>0 1-a)) (4.7)

The test defined by (4.7) will be called modified Wang test. Then we have

the following result.

Proposition 4.2 The modified Wang test is a C(a)-type test. It is equivalent

to the optimally robust C(c)-type test defined by ns (given by Proposition 3.3).
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Proof. We prove that Yn(e) ) (riO)Zn(8;ro) . First, consider

equation (4.4). Using (4.1) we have

0 i E ( [ ] V 0 .r e ( r d V i ~
0 ~ V (1 ECAv'x Ozd (1)o .[]o''(1 lr ] -r-x11

VI/ I1d1= dlX,al(1))lOXl ) 0r /j z'dO lr)ldK~x) ,

and (4.4) becomes

S(0 (vi/ I d ( ) L ) - 0 (V/d(x,a ()l) d "(x, 1i) ) X(l)d(X) -0 o.

(4.8)

Now, combining (4.2) and (4.3) and noting that EA = 0 , we obtain

/(^ v l) 61 v + f (A-V o l ̂  Vo 9= o
(AV 1{(Aa~) 0 (~o '1 ASV O

and performing these integrations we get finally by (4.8)

V0 = -V1  (: -V) . (4.9)

For a given positive constant c , define n. and U0  as in Proprsition 3.3.

Moreover, choose

V * c.(UO)pp (4.10)
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Then

T (4.11)

and

d(x~ct (1)) = * P-U)2)*(O(1)1N

(4.12)

= (U-1x (p.(

(The left member of (4.8) becomles

=~n(~)(-3()X13(op o 0 by (3.6) .

Moreover, by (4.5), (4.9), (4.10) and (4.12) we have

V()- E(rd-) E(d (xic (1) )** ,,IdI(r))

W (UQ)2 eE (#P2 () (r)'Iz~p j2) (4.13)

- No 0 ) pp p(no)'
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where

Z(p) -(Uox)(P) and )(no)  En
2(x,r)-Iz(P) .

Finally we get

-1/ (U O)1/2 ,_ .1 -. T l[red] +V
yn(j) - n'l/ 2 . ((U)p. p/ )l.Z"O.

Y 9)0PP P 0 i:1 -V

M n-1/2.x-;1/2( 1)O Z n.( ,-1. (r-z(p).(
p-0o :mi " C(U) T • 0UoPP

M n-1/2 0-1/2 r n #c (r.z ( p )

P (roe:.,l€ Cr p

M n-2/2 X-1;/2 (nO) zi~lv -(r)z

p 0x ),1/ (nO) .Zn(e;n ) .

This completes the proof.

Proposition 4.3 The Wang test is always less efficient at the model than

the modified Wang test.

Proof. The modified Wang procedure has the same asymptotic power as the

optimal robust C()-type test defined by no . Therefore, the square of

its efficacy equals (Uo2 A (no )
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On the other hand, the square of the efficacy of the Wang test is given

by the formula (see Wang, 1981, p. 1104)

S21 ) - (v() - (C/61)'(-V)/v(;))

Thus, the relative efficiency of the Wang test with respect to the modified

Wang test can be computed as

eff{Wang test, modified Wang test) = s 2()/((Uo)2p/p(no))

hence, using (4.10) and (4.13)

-r [A (no)/(UO l*

p 0 0 2
100U) pp. x 1/2 (n)+ 1C/61) * co (uO0) PP/(uo P P 0

2

(XP(- o ) + /61).C/(UPPP 
2

Using (4.2) we get finally

eff{Wang test, modified Want test)

1-c E[(Iz(PlI/c)'o-(c/Iz(P)) -t%(-c/Iz(P)) < 1

This completes the proof.
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5. ASYMPTOTIC BEHAVIOUR

In this section we present some numerical results on the asymptotic

behaviour of C(c)-type tests under several distributions. In the exposi-

tion we apply the methods which have been used by Maronna, Bustos and Yohai

(1979) for comparing different regression estimators. We consider simple

regresssion:

y a xTe + e

where x = (1,x (2))T , e. (8(1) , e(2 ))T

We want to test the hypothesis

H0 : e(2) o

Let G and K be the distributions of e and x(2) , respectively.

For x(2) and e we choose the following contaminated normal distributions

(1-C)(') + CO('/s)

with the following parameters

c : 0 0.1 0.1 0.05

s: 1 3 5 10
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We want to compare the asymptotic behaviour of the optimally robust C(c)-type

test (see Proposition 3.3)

no(xr) . Pcl/Iz(2)l(r)

with that of another C(a)-type test with bounded influence function, namely

nM(x~r) = Wc2(1z (2) ) c3(r) (.)

where Wc(ItI) - Vc(t)/t = min(1,c/ItI) . The C(c)-type test defined

by (5.1) is the solution of the optimality problem considered in Proposition

3.3 within the restricted class of functions n satisfying n(xr) = w(x)-V(r)

see Ronchetti (1982b). The subscript "M" reminds that N is a function of

Mallows' form.

In order to investigate the behaviour of a C(a)-type test defined by

a "redescending" n-function, we consider also the following procedure:

nMT(xr) - Wc4(lz(2)I).O(r;csc*,c6,A5 ,Bs)

where i is defined by

*(r;c 5,K*,c 6 ,A5,B5 ) a r if 0 < Ir K c6

a ct'tanhUB(c5- rI)]sign(r) c6< Irl < c5
*0 c5< Irl
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= (A5(i'*-1))" , B u ((i*-l)B2/A5)"/2 The function * defines the

socalled "hyperbolic tangent estimator" for location; see Hampel, Rousseeuw,

Ronchetti (1981). Note that c6 ,A5,B5 are computed implicitly in terms of

c5 and *.

For each test we compute the standardized sensitivities at the normal

model

uSUpx,r n(xr)I.z(2)

and the efficacies

u 2/A

u22 )2

under several distributions.

Note that the efficacy of the tests defined by rI and r4T factorizes;

in these cases we have

22 2 DX.DR

where DX depends only on w and K and DR-B2/A , with A = E* 2 , B = E*

c c c

The constants are chosen so that all the tests have the same asymptotic

efficiency, when x (2) - H(0,1) and e - (O,1)

Table 1 describes the calibration as well as the standardized sensitivities

of the tests. From Table 2 one can obtain the following conclusions:
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1) riT Is better than for all distributions under consideration;

2) no  is better than iml. when the distribution of the errors has

moderate tails;

3) no  has the better standardized sensitivities (computed at the normal

model).

Table 3 gives the factors for the and nM-test.
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Table 2: Asymptotic efficacies

G too to @1 en 1. to .05 STSNS.
s-1 s-3 B-5 8-lO

K TEST

tw0

N .e95 .75 971 .80 3.16

TI• r .95 .77 .77 .87 3.37

S0  .95 .78 972 .78 2.87

s=3 nm 1.52 1.21 1.13 1.28 2.70

i 1.53 1.23 1.23 1.40 2.91

- 1 1.54 1.27 1.16 1,25 2.34

T- M 2u44 1.94 1.81 2,04 2e33

TIl T  2&44 1.97 1.97 2,24 2.51

'D T10 2.51 2.06 l85 2.00 1.94

Ts 1 2.99 2.38 2.23 2.51 2e23

TitT 3.00 2.42 2e42 2,76 2.38

10 3;24 2;61 2.32 2;50 1.85



Table 3: FactoriSatiOn for j- and nTrtest

too to .1 to o1 to 05

s.3 BUS s1o

DR

m970 .771 ,722 .814

nTlT s973 785 .785 e894

Ox

s979 1.559 2.512 3.087

0
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